
Technical Report

F1I FLr COPY CMU/SEI-90-TR-17
ESD-90-TR-217

- Carnegie-Mellon University

Software Engineering Institute

Experiences Portingo the Distributed Ada Real-Time Kernel

Brian Smith
Boeing Military Airplanes

/ James E. Tomayko
Software Engineering Institute

June 1990

* OTIC
/A LECTE -

, 3," SEP 2 41990

*/ *j //

/ / 4, 4
/

//

DITRU70, /SITEZ It

//

Approved tor tL-ic ,eleo

/

/

Diauo Ur,\

. ' ,

The following statement of assurance is more then a statement required to compiy wilh the federal law. Thi is a sincere stntement by the uri;-Or.iy to assure that all
people are included in the diversity which makes Carnegie Mellon an exciting place. Carnegie Mellon wishes to ncludo people without regarid to race, color, national
origin, sex, handicap, religion, creed, ancestry, belief, age. veteran status or sexual orientation.

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admissions and employment on the basis of race,
color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders. In addition, Carnegie Motion does not discnminate in admissions and employment on
the basis of religion, creed, ancestry, belief, age, 'veteran status or sexual orientation in violation of any federal, state, or local laws or executive orders. Inquiries concern,
ing application of this policy should be directed to the Provost, Carnegii Mellon Universty, 5000 Forbes Avenue, Pittsburgh, PA 15213. trlephone (412) 268.6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbef Avenue, Pittsburgh, PA 15213, teiephone (412) 268.2056

Technical Report
CMU/SEI-90-TR-17

ESD-90-TR-217
June 1990

Experiences Porting
the Distributed Ada Real-Time Kernel

Brian Smith
Boeing Military Airplanes

James E. Tomayko
- 7 ----- -_--- Software Engineering Institute

NTIS ,,
DT71'_ Ti'."?

J us t,':ci].

Dist

A.01
Approved for public release.

Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFO, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1990 by Carnegie Mellon University.
This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

During the time the work described In this report was being done, Dr. Tomayko was an associate professor of
computer science at The Wichita State University, under contract to Boeing Military Airplanes, and was not part of the
DARK Project.

Table of Contents

1. Rationale 1

2. Porting DARK at Boeing Military Airplanes 5
2.1. Porting DARK Without Communications 5

2.1.1. Deletion of Debug Code 8
2.1.2. Reduction of Network to Single Processor 9
2.1.3. Removal of Communication Code 9
2.1.4. Startup Syncronization Communication 10

2.2. Intraprocess Communication 10
2.2.1. Updating of Clock/Timers to PV682 Hardware 10
2.2.2. Original Test Plans 11
2.2.3. Phase 1 Evaluation Results 12

2.3. Modifications to DARK to Use the Boeing Communications Package 13
2.3.1. System Architectural Considerations 13
2.3.2. Modifications to DARK Communications Procedures 14

3. Conclusion 19

References 21

CMU/SEI-90-TR-17 I

II

List of Figures
Figure 1-1: Network on Which DARK Was Originally Implemented 2

(This figure originally appeared in the Kernel Facilities
Definition, p. 18.)

Figure 2-1: System View of the Network 6

CMU/SEI-90-TR-17

I

Experiences Porting
the Distributed Ada Real-Time Kernel

Abstract: The Distributed Ada Real-Time Kernel (DARK) is a mechanism for
supporting the execution of distributed real-time Ada applications in embedded
computer systems. It provides a solution to scheduling and distributing tasks with-
out modifying the Ada language or vendor-supplied runtime systems. An important
test of the utility of the Kernel is whether or not it can be ported to different
hardware architectures and still function effectively. As part of an independent re-
search and development project, Boeing Military Airplanes and The Wichita State
University became co-acceptors of a copy of DARK for the purpose of demon-
strating a port to a 68000-based distributed architecture. This report describes the
experiences in accomplishing the port. /

1. Rationale
The Distributed Ada Real-Time Kernel (DARK) Project began as an attempt to prove that
distributed real-time processing in Ada could be accomplished without tailoring the vendor-
supplied runtime systems or the language itself. This is important because either solution to
the problems of real-time systems would defeat portability and simplicity. Users want lan-
guages and systems to be functional, not feature-filled. They also want to solve scheduling
and tasking requirements once, and not every time U iat they are faced with a new architec-
ture or applications suite.

The requirements and design for DARK are detailed elsewhere, and it is expected that the
reader of this report is familiar with the details of the process model and software architec-
ture. 1 Essentially, the Kernel provides facilities for communication between processes on
different processors, semaphore and scheduling management, control of time and inter-
rupts, and provision for setting alarms. A view of the network on which DARK was originally
implemented is shown in Figure 1-1. Note that non-Kernel devices such as sensors can be
controlled by processes on Kernel processors, and that each processor can support multiple
processes. Communication was implemented using the industry sector operations (ISO)
seven-layer model; in this case messages are removed from queues, enclosed in packets,
and sent along the network to the appropriate destination.

Creating the Kernel and demonstrating it on one testbed is clearly not enough to prove the
efficacy of the approach. It is important to port the Kernel to different architectures both to
examine its operation as a general solution to distributed processing problems and to enable
users who are just beginning to deal with these issues to see a working solution. Accord-
ingly, one of the goals of the DARK Project from the start has been technology transition.

1See especially Judy Bamberger et al., Kernel Facilities Definition, CMU/SEI-88-TR-16, July 1988. Other
references listed on p. 21.

CMU/SEI-90-TR-17 1

Devcevice Deice

ai Main Main

nit Unit Unitp ~ p, P2 Vvian pCpp p

Merlin F ~ab F iin ~ c ~ C P51 34 P1 '2P

KERNEL KERNEL KERNEL

Processor a Processor b Processor c

Device System Bus 1
Processor d D Processor m

KERNEL KERNEL

Main
Mtit Unit

Pd ° Pd pmLancelot Pm

p. : Process #i running on processor q.
I

Main Unit: The Ada Main Unit running on the processor.

Merlin, Vivian, and Lancelot are named for use in
examples.

Figure 1-1: Network on Which DARK Was Originally Implemented
(This figure originally appeared in the Kernel Facilities Def-.,,,,'n, p. 18.)

2 CMU/SEI-90-TR-17

One mechanism of transition is the port of the Kernel to a VAX system, which is more easily
available to potential users and on which the operation of the Kernel can be studied without
a lot of the problems encountered observing execution of software on more deeply em-
bedded systems. This port was accomplished at the Software Engineering Institute by
members of the DARK Project team. Another mechanism is the release of the Kernel to a
set of Acceptor Sites, which then try to use DARK in their own projects. The remainder of
this paper describes the experiences of the Boeing Military Airplanes-the Wichita State Uni-
versity Acceptor Site. The actual work was done at Boeing using independent research and
development funds, with the Wichita State University supplying expertise under contract to
the Boeing Project.

CMU/SEI-90-TR-17 3

4 CMU/SEI-90-TR-1 7

2. Porting DARK at Boeing Military Airplanes

Boeing has a long history of research in embedded distributed systems and is presently
working on operating systems and hardware architectures based on both the PAVE PILLAR
and PAVE PACE government initiatives. One result of this work was an operating system
developed as an independent research and development project and described in papers by
Higgins and Kroening. 2 This particular operating system was designed for the military stan-
dard 1750A 16-bit processor. As part of continuing research, the system is being ported to a
32-bit processor network. This is the network that is also the basis for Boeing's port of
DARK. Figure 2-1 is a system view of the network.

Basically, the network consists of clusters of nodes, where each node is a processor
capable of supporting multiple processes. As part of the operating system, a communica-
tions package enabling process-to-process message passing throughout the network is
available (detailed in Kroening's paper). It was decided to follow two different paths in port-
ing DARK to this architecture. One path is to demonstrate that DARK works with non-
communicating processes first on a single processor and later on multiple processors. The
second path is to use the Kernel as is, including the communications facilities available to
the user, but to replace the existing DARK communications scheme with the already-
developed Boeing communications package. The details of these two ports are in the next
sections.

2.1. Porting DARK Without Communications

The first port of DARK at Boeing was to establish the functionality of the Kernel without
communications, since from the start there was no intention of using the original DARK com-
munications package. This test meant running several processes on a single processor and
observing the results. Some positive and negative aspects of DARK were discovered as part
of this port.

DARK has the advantage of being an extremely well-documented system. This is an im-
mense aid in onsite modification. It is also, in general, fairly well designed. The use of Ada
as a development language provides for easy readability and good data tracking. On the
down side, there are some coding practices that the authors have used that complicate the
dependency lists and increase the number of modules that require recompilation during up-
dates. Chief among these is the use of generics.

Of the 23 generic packages defined in DARK, only two are truly generic. In the other 21
instances, DARK uses these generic packages as a means for allowing the user to define

2D. W. Higgins, !mplementing a Fault-Tolerant, Distributed Operating System in Ada, The Wichita State
University Computer Science Department, Technical Report WSU-CS-T-87-5, and J. E. Kroening, Logical Ad.
dressing: Communications in a Distributed Architecture, The Wichita State University Computer Science Depart-
ment, Technical Report WSU-CS-T-87-6.

CMU/SEI-90-TR-1 7 5

A typical cluster...

1553 bus more clusters...

68000 68000
processor processor

VME bus

non-volatile 68000
memory processor

68000 Interface
processor

high speed data bus
more clusters...

Figure 2-1: System View of the Network

6 CMU/SEI-90-TR-17

constants. In porting this system, there were several occasions where changes were made
to only the body of a generic package. In reinstantiating the generic, the specification of the
instantiation is marked as having been updated even though only the body was changed.

Ada dependency rules then force recompilation of all modules referencing this specification.
By using generics in this fashion, the functionality of Ada in providing package specifications
as useful module interface controls is violated.

Another area of difficulty was in the linkages to assembly code modules. In several in-
stances the Interface and LInkname pragmas were defined in package specifications.
These pragmas provide for interfacing between Ada and assembly modules and should only
be placed in the package bodies. That way the package specification will not need to be
modified should the linkname reference be changed.

The target hardware for the port consists of three clusters connected by a high-speed data
bus, the system architecture as illustrated in Figure 2-1. Within each cluster are multiple
PV682 central processing units (CPLI' and other elements such as nonvolatile memory and
a 1553 communications board interconnected by a VME backplane bus. Three of the PV682
CPUs are available for user code; the fourth is used for the distributed system communi-
cations functions, including 1553, internode, and intercluster communications.

A processor node consists of the following:

* Motorola 68020 CPU
e Motorola 68881 Floating Point Coprocessor
* Advanced Micro Devices Am9513 System Timer Controller (5 timers)
* OKI MSM6242 RS/GS Real Time Clock/Calendar (not used)
a One Mb Ram

* Up to One Mb Rom
* Two Rs423/422 Serial Ports

The timers and serial ports do not match those used on the MVME133A board in the DARK
testbed configuration. This affects the low-level software and interface protocols used by the
DARK code. Additionally, each cluster consists of multiple CPUs on a VME backplane.
Each CPU is capable of running application software. This in contrast to the DARK testbed,
where only one CPU per two-processor node actually runs application software.

The rehost plan took into account the differences between the testbed architectures. The
plan was divided into two major phases.

Phase 1 was a trim down phase. References to unsupported hardware and software ele-
ments were eliminated or modified. This included stripping out references to the ring com-
munication architecture and modifying the timer/clock structure to reference the Boeing
hardware. The end product of this phase was a subset of DARK that operates in a minimal
fashion on a single PV682 CPU.

CMU/SEI-90-TR-17 7

At the end of the Phase 1 modifications, the capabilities of DARK that remained were evalu-
ated for use. Factors such as functional usefulness, efficiency, and code size were consid-
ered. Additional consideration was given to interfacing this core of DARK with other re-
search and development efforts including internode communication, data security, and task
fault tolerance. The nature of this Phase 2 effort is discussed in the last section of this
paper.

The following directives were made for Phase 1 modifications:

" The target hardware was a subset of the final target hardware configuration. A
single PV682 CPU was to be used for Phase 1 tests.

" All ring communications references were to be eliminated. Furthermore, local
intraprocessor communications were not required.

* Unused data structures could be left "dangling." Phase 1 modifications were
not to produce a final polished product, but something that could be quickly
evaluated.

Original and selected intermediate versions of the DARK software were maintained during
these modifications. This allowed for full design tracing and possible backtracking of soft-
ware changes. Additionally, modifications are being tracked by an informal software prob-
lem report (SPR) system.

Details on these modifications are as follows:

2.1.1. Deletion of Debug Code
DARK contained a significant amount of idiosyncratic debug code that the team considered
unnecessary. All references to the debug routines and any inline debug code were
eliminated.

The following modules were modified:

-- Package specifications:

- scheduler.Ada - timekeeper.Ada

-- Package bodies

- bio_body.Ada - cbody.Ada
- gain_body.Ada - gpambody.Ada
- grmnbody.Ada - gtsm body.Ada
- nprocbody.Ada - pe body.Ada
- pit body.Ada - scc_porta body.Ada
- schbody.Ada - tb body.Ada
- tkbody.Ada

8 CMU/SEI-90-TR-17

The following modules (specs and bodies) are no longer referenced:

- csadebug.Ada - csa_debugbody.Ada
- debug.Ada
- dggdebug.Ada - dgg_debug_body.Ada
- kt debug.Ada - kt_debugbody.Ada
- nct_debug.Ada - nct_debug_body.Ada
- ptb_debug.Ada - ptb_debug_body.Ada

2.1.2. Reduction of Network to Single Processor
For expediency in getting a subset of DARK operational for evaluation, the network was
reduced to a single processor. This simplified the removal of communication code, espe-
cially in areas where such code was hidden to the user. This simplification allowed for rapid
modification with a minimum of worry about internal details. The drawback is several dan-
gling code structures that will require future cleanup during Phase 2 modifications.

The main code change to accomplish the reduction was in package
GenericProcessorManagement where much of the network startup code was eliminated.
This change forced a simplified network configuration table (NCT) declaring a single Kernel
process (KPROC) board. Additionally, any modules confined to the software tree rooted by
package node process (NPROC) are not referenced. Package LowLevelHardware was
also modified to provide stubouts for procedures requesting network identification switch
readings.

2.1.3. Removal of Communication Code
Communication code falls into two categories: startup and interprocess communication.
Most calls to the communications modules were simply commented out. This will provide a
roadmap for rebuilding during Phase 2 modifications. The exception to this general rule is in
package Generic_ProcessorManagement, where the communication calls were embedded
in the network initialization code that was removed.

References to the following modules were eliminated during the modifications:

busio.Ada
biobody.Ada
datagram-management.Ada
dgm_body.Ada
datag ram_globals.Ada
generic_communication management.Ada
gam body.Ada

These modules were modified to remove communications references:

generic-processjtable.Ada
gpam-body.Ada
gpmbody.Ada
grmbody.Ada
ipm-body.Ada
tk-body.Ada

CMU/SEI-90-TR-17 9

I
U

2.1.4. Startup Syncronization Communication
The DARK architecture provided for a serial communications line between Kprocs, which
was to be used for synchronizing the real-time clocks across the network. By assuming that
only one processor was to be defined, we eliminated this communication line and its associ-
ated software drivers. As this was the only use of the serial communication port on the 3
MVME133A, the serial port driver modification could be postponed indefinitely. The top-level
time syncronization functions were rooted in package GenericProcessorManagement,
which was modified to support these changes.

2.2. Intraprocess Communication 3
User-level communications were confined to the Generic Communication Management
package. These modules could be eliminated from DARK simply by not referencing them. i
Embedded within DARK, however, were several references to lower level communication
interfaces by the event scheduling, processor management, and process management algo-
rithms. These algorithms were required to clean up messages and buffers left dangling 3
when a message request timed out, a process was aborted, or the like. Given the complex-
ities of the package dependency lists, it was easier to comment out all communication
references wherever they occurred, rather than try to isolate and stub out the top level I
references of this lower tier of communication routines.

2.2.1. Updating of Clock/Timers to PV682 Hardware I
The original DARK architecture used two hardware timers for time and event management.
One timer ran the clock and the other was used for the event queue interrupts. This allowed
for very fine granularity in time definition. The PV682 board has only one timer that could be
used for these functions, timer #2. Timer #3 is theoretically available, but unfortunately it
cannot be used with our emulator hardware. 3
A reasonable workaround is to quantize time to a larger value, on the order of 20 mil-
liseconds, and convert to what is essentially a frame-based time event system. This was
not entirely arbitrary or unreasonable, as typically real-time embedded software is frame
based. This modification actually simplified the DARK timers and clock functions without any
significant change to software above the level of the Time-keeper body software. This 3
change eliminated packages Clock and TimerController. The only significant addition to
Time-keeper is code to initialize and reset the hardware timer and to increment the current
time. The definitions of interrupts for DARK were updated as part of the timing replacement. 3
All of the interrupts for the MZ8305 parallel i/o boards, the MVME133A serial i/o port, and
the MVME133A timers were eliminated. The interrupt for the clock timer was redefined to
match the hardware connection of the PV682 board. i

The following modules were modified or created:

- tkbody.Ada - lltk.a68 (new)
- interruptnames.Ada

I
10 CMU/SEI-90-TR-1 7 I

These modules are no longer used:

- clock.Ada - c body.Ada - low level clock.a68
- timer controller.Ada - tc body.Ada - tcbodymachinecode.a68
- mz8305 definitions - mzbody.Ada

2.2.2. Original Test Plans
This section describes the basic tests performed on DARK after Phase 1 modifications were
completed. The test objective is to determine the efficiency and flexibility of the DARK
scheduling algorithm and compare it to the default Telesoft Ada runtime functions.

2.2.2.1. Timeslicing
Timeslicing need not necessarily be considered at this time for embedded applications, as
this software is typically run on a fixed-frame basis. Typically embedded software runs with
a short time frame on the order of 20 to 50 milliseconds. True timeslicing between parallel
processes would require that the slice time be on the order of one tenth or less of the frame
time. This would produce a time slice on the order of 2 milliseconds or less. Any timeslicing
test should be conducted with this order of slice size. Note that the default time slice size for
DARK is one second.

2.2.2.2. Scheduling Overhead
An executive was defined, under DARK and standard Ada, to run a set of processes. These
processes performed simple math functions in a loop to burn time. Execution time for these
processes were compared under DARK and standard Ada for efficiency checks.

This test shall be repeated with blocking (wait) statements inserted into the process loops so
that the context switching and scheduling algorithm overhead time may be computed. The
processes were designed so that the blocking statement periodicity is on the same order as
the frame time. With several processes queued up, this will keep the CPU busy and the time
measurements accurate.

2.2.2.3. Process Priority
Functionality of the DARK process priority mechanism shall be tested. The tests shall verify
that:

* High-priority processes are always scheduled in favor of lower priority proc-
esses when they become unblocked.

* Processes of equal priority with wait are cycled through without starvation.
* Low-priority processes become active when high-priority processes are

blocked.

CMU/SEI-90-TR-17 11

2.2.2.4. Kernel Size
Executable test code packages for equivalent processes running under DARK and standard
Ada shall be compared for size. Excessive Kernel size could eliminate DARK use even if all
other factors are favorable.

2.2.3. Phase 1 Evaluation Results
The following program design language (PDL) describes the software test driver used for
the initial DARK tests on the uniprocessor configuration. Five parallel tasks were defined of
the same format.

Define tasks: Processone : high priority
Process two : high priority
Process three : high priority
Process four : high priority
dawdle : low priority

Task structure: Begin
starttag (for debugger)
while (count_2 < 700) loop

while (count_1 < 15000) loop
increment count_1

end loop
midpoint-tag (for debugger)
wait/delay for 20 milliseconds (optional)

end loop
endtag (for debugger)

End

The results can be summarized as follows:

2.2.3.1. Time Slicing
An initial attempt at time slicing was made; however, it was not successful. This attempt
was made with three processes of equal priority that ran counting loops. These processes
always executed sequentially, even when time slicing was enabled. This indicated some
problem operationally with DARK, or the modifications, that was not determined as of this
writing.

2.2.3.2. Scheduling Overhead
DARK requires an average of .67 milliseconds to perform a full end-to-end context switch
resulting from a Wait call. This measurement is the total time introduced in switching from
process A to process B, assuming process B is ready to run. Measurements from an equiv-

alent process using delay statements under the standard Ada runtime yielded a full context
switch time of .32 milliseconds, less than half of DARK's switch time. This time measure-
ment also (unavoidably) included the clock/event interrupt handler execution time, so the
true context switch time is really somewhat better than this.

12 CMU/SEI-90-TR-17

I I I

A direct comparison of task encapsulation overhead time between DARK and standard Ada
is not readily available. as the Ada compiler generated different format assembly code for
the two test cases. In this particular case, a more efficient set of assembly code for the test
procedures was generated under DARK (some variables were stored solely in registers,
rather than being written out to memory). However, in general, this would not be true.

The total process elaboration times for the test software were measured. Use of DARK
added 23 milliseconds to the 447 millisecond startup time required by the Ada runtime with-
out DARK. This represents a five per cent increase.

2.2.3.3. Process Priority
Equal priority processes execute in a first-defined, first-executed order when blocking or
other preemption is not used. When priority has been defined, DARK executes according to
the ordered priority specified, highest priority process (lowest priority number) to lowest pri-
ority process (highest priority number). DARK switches to a lower priority process when a
higher priority process is blocked. However, it did not automatically switch bnck once the
higher priority process becomes unblocked. The lower priority process continues to run until
it is blocked, at which time the higher priority process resumed.

2.2.3.4. Kernel Size
The use of DARK without the communication code adds approximately 70 Kilobytes to the
size of the executable module as compared to the standard Ada runtime without DARK.

In summary, the Phase 1 port was not satisfactory from a performance standpoint as com-
pared to the Ada tasking model for single processor operation. As a base for a distributed
processor network, this performance may be acceptable.

2.3. Modifications to DARK to Use the Boeing Communications
Package

This section describes the modifications to the Distributed Ada Real-Time Kernel (DARK)
needed to use the Boeing communications package as part of the Phase 2 plan. The intent
was to build on the Phase 1 version of the DARK software while minimizing the changes to
the Boeing communications package. This effort was never completed due to the expiration
of funding, so this section is a discussion of the design of the modifications needed.

2.3.1. System Architectural Considerations
DARK defines the hardware associated with the distributed network in a user-prepared pro-
cedure as "makeNCT." Each communicating piece of hardware in the system architecture
(processors, radars, weapons, etc.) is given a logical name (type string); a phyical address
(bus address); is specified as a Kernel device or not (processors usually are, radars, etc.,
are not); is specified as needed to run or not; is given an allocated process ID; has its in-
itialization order specified, and sets a flag when initialization is complete. An example of this

CMU/SEI-90-TR-17 13

is on page 40 of the Kernel User's Manual. 3 The main unit of the software located on any
kernel processor executes makeNCT as its first statement. Thus, each kernel processor
has an identical view of the architecture of the system. Note that this view is unchangeable.

The DARK communications scheme uses the information in the network configuration table
(NCT) in apparently only two ways: The actual bus address is associated with the hardware
logical name and the processes on that hardware are thus also associated with that ad-
dress. Second, if the hardware is defined as a Kernel device, then messages sent to it are
embedded in a datagram following the ISO model. Otherwise, the data are sent in raw
form.

4

The Boeing architectural model is described in the package RR_ArchitecturalProfile, which
enumerates the configuration of the nodes in a cluster, and the number of clusters, etc. ac-
cording to the architecture illustrated in Figure 2-1. This package is "withed" to the communi-
cations package and thus forms the basis for the communications package message ad-
dressing schemes.

Relative to the system architecture, the changes to DARK can be limited to declaring ALL
devices as non-Kernel devices. Thus the datagrams will not be made and the data will be in
the form needed by the Boeing communications procedures. The bus addresses should be
correctly specified, though it is worth testing to see if they are needed once the Boeing com-
munications procedures are used. If not, then the addresses can be set to some bogus, but
benign, numbers and will cease to be impediments to fault tolerance.

If the RR_ArchitectureProfile is elaborated normally, then the hardware picture that will be
used by the Boeing communications procedures will be available.

2.3.2. Modifications to DARK Communications Procedures

2.3.2.1. SendMessage
The DARK sendmessage procedure sends a message in the blind and does not block
waiting for an acknowledgement. Its parameters are the name of the receiver (which is de-
fined by the user in the main unit as part of processor a comm area), a message tag that
can be used by the receiver to decode the message, the length of the message in bytes,
and the address of the beginning of the text of the message.

The corresponding Boeing procedure is Put. Its parameters are the logical address of the
receiver (an integer constant assigned by calling declare_logical_addressee), the address of
the beginning of the message, the number of words, a priority (range 1-256, with 1 being
high), and a result (an address of where to put the result).

3Judy Bamberger et al., Kernel User's Manual, Version 3.0, and Appendix A: Ada Code, CMU/SEI-UG-1,
December 1989.

4Kernel User's Manual, p. 75.

14 CMU/SEI-90-TR-17 I

The Put procedure can be embedded in sendmessage. The four parameters of
send_message can be matched up with the Put parameters as follows:

DARK Boeing

receiver: unique string name unique integer

message tag: none needed if non-Ker. none needed

address: first byte of message same

num. of words: integer same

result: none flag in a certain address

As can be seen, the parameters in send message give all the information needed for Put,
except that the name of the receiver has to be associated with its logical address. The
simplest method of doing this is to assign unique string names for the DARK processes
using numbers as characters. Then, inside send-message, the function T'VALUE can be
used to convert the string parameter to its integer value for use in Put. Note that this re-
quires careful matching when the processes are assigned names and the logical ad-
dressees are declared.

2.3.2.2. SendMessageandWait
As this procedure may only be used for sending messages to Kernei processes, it is recom-
mended that it not be used.

2.3.2.3. Receive_Message
DARK has a fairly complex receivemessage, in that it does functions similar to Boeing's
Get, GetandWait, and GetCyclic. The procedure can be set for infinite wait, a wait until a
certain epoch time, or a wait for a specified elapsed time. These three forms roughly approx-
imate the three Boeing forms of Get. However, these three Boeing procedures are consid-
ered "active side services," and receive should be a "passive side service." Unfortunately,
the underlying concept of the passive receive is distinctly different. Since DARK assumes
that incoming messages will simply be added to a queue to wait for service, there is no
protection from overwriting. Boeing's receive can check a number of possible logical ad-
dressees for incoming messages, and it avoids overwriting by passively waiting for a mes-
sage to arrive, and then acting.

DARK's receive has the following parameters:

Sender out tells the caller whom the message came from

Message_tag out aids in decoding datagram

Message_length out

CMU/SEI-90-TR-17 15

Message buffer in where to put the message

Buffersize in size of receiving buffer

Additional parameters can be used to indicate resumption priority, a messages lost flag, etc.

The key parameters can be integrated with the Boeing receive in the following way:

sender from the parameter 'activation reason'

messagetag null, not a Kernel device

message length object' size

message buffer any defined variable (here is where it is important
to match types on both ends)

buffer-size defined variable'size

Everything else can be ignored at this point.

Example:

Let us say that process 1234 wants to receive messages
from process 5678.

In the body of process 1234:

communications.DeclareLogical Addressee
(5678, message-in'address);

This associates the logical address 5678 with the actual
physical address messagein'address, where messagein is
declared as an object of the desired type.

Later, process 1234 checks to see if there is communication:

Receive message (sender, tag, length, messagein'address,
messagein'size, ...)

Embedded inside the modified Receive message is:

16 CMU/SEI-90-TR-17

communications.Receive (5678, 10.0, whocalled)

Then the whocalled is converted to a string and assigned to sender,
and so on.

Note that the additional code needed to use the DARK communications primitives is isolated
at the application level, and does not require too much to change in the DARK or Boeing
code.

CMU/SEI-90-TR-17 17

18 CMU/SEI-90-TR-1 7

3. Conclusion
Porting DARK to the Boeing-specified architecture proved that the design features of DARK
are so well encapsulated that it is possible to make major changes, such as the substitution
of the communications package, without destroying the process model that DARK imple-
ments. However, if the software were to be used in a genuine real-time environment, it
would have to be modified to have some fault tolerance. This may be accomplished by dis-
tributing the network configuration table, or using the information in it in a different way.

CMU/SEI-90-TR-17 19

20 CMU/SEI-90-TR-1 7

References

Judy Bamberger et al., Kernel Facilities Definition, CMU/SEI-88-TR-16, ESD-88-TR-17,
ADA1 98933, July 1988.

Judy Bamberger et al., Distributed Ada Real-Time Kernel, CMU/SEI-88-TR-17, ESD-88-
TR-18, ADA1 99482, August 1988.

Judy Bamberger et al., Kernel Architecture Manual, CMU/SEI-89-TR-19, ESD-89-TR-27,
ADA219295, December 1989.

Judy Bamberger et al., Version Description and Installation Guide, CMU!SEI-89-TR-20,
ESD-89-TR-28, ADA192292, December 1989.

Judy Bamberger et al., DARK Porting and Extension Guide, Kernel Version 3.0,
CMU/SEI-89-TR-40, ESD-89-TR-40, ADA219291, December 1989.

Judy Bamberger et al., Kernel User's Manual, Version 3.0, and Appendix A: Ada Code,
CMU/SEI-UG-1, December 1989.

D. W. Higgins, Implementing a Fault-Tolerant, Distributed Operating System in Ada, The
Wichita State University Computer Science Department, Technical Report WSU-CS-T-87-5,
1987.

J. E. Kroening, Logical Addressing: Communications in a Distributed Architecture, The
Wichita State University Computer Science Department, Technical Report WSU-CS-T-87-6,
1987.

CMU/SEI-90-TR-17 21

I
I
I
I
I
I
I
I
I

22 CMU/SEI-90-TR-17 I
I

ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Is, REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRISUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

2b. OECLASSIFICATION/OOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED

N/A
4. pERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(SI

CMU/SEI-90-TR-17 ESD-90-TR-217

6s. NAME OF PERFORMING ORGANIZATION 61L OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

(If appiicable)
SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6c. AooRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Codel

CARNEGIE-MELLON UNIVERSITY ESD/XRSI

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE
HANqmO-_ MA n171

B. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

SEI JOINT PROGRAM OFFICE ESD/XRSI F1962890CO003

Be. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.

_______________________ 63752F N/A N/A N/A
11. TITLE linciude Security Classification)

EXPERIENCES PORTING THE DISTRIBUTED ADA REA -TIME KERNEL

12. PERSONAL AUTHOR(S)

Brian Smith and James E. Tomayko
13. TYPE OF REPORT 13b6 TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 1s. PAGE COUNT

TAT. FROM _TO June 1990 28
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. DARK Real-Time
Distributed Ada Real-Time Kernel

Processing Real-Time
19. ABSTRACT lContinue on reverse if necessary and identify by block number)

The Distributed Ada Real-Time Kernel (DARK) is a mechanism for supporting the execution of
distributed real-time Ada applications in embedded computer systems. It provides a
solution to scheduling and distributing tasks without modifying the Ada language or
vendor-supplied runtime systems. An important test of the utility of the Kernel is
whether or not it can be ported to different hardware architectures and still function
effectively. As part of an independent research and development project, Boeing Military
Airplanes and The Wichita State University became co-acceptors of a copy of DARK for the
purpose of demonstrating a port to a 68000-based distributed architecture. This report
describes the experiences in accomplishing the port.

20. OISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLIMITED 0 SAME AS APT. 0 OTIC USERS 0 UNCLASSIFIED, UNLIMITED DISTRIBUTION

22s, NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

KARL H. SHINGLER (include Area Code)

412 268-7630 SEI JPO

D FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

